Towards a formal theory of fuzzy Dedekind reals
نویسنده
چکیده
In the framework of Henkin style higher-order fuzzy logic à LΠω we construct fuzzy real numbers as fuzzy Dedekind cuts over crisp rationals, and show some of their properties provable in à LΠω. The definitions of algebraic operations and a theory of fuzzy intervals are sketched.
منابع مشابه
On the constructive Dedekind reals
In order to build the collection of Cauchy reals as a set in constructive set theory, the only power set-like principle needed is exponentiation. In contrast, the proof that theDedekind reals form a set has seemed to requiremore than that. Themain purpose here is to show that exponentiation alone does not suffice for the latter, by furnishing a Kripke model of constructive set theory, Construct...
متن کاملThe HoTT reals coincide with the Escardó-Simpson reals
Escardó and Simpson defined a notion of interval object by a universal property in any category with binary products. The Homotopy Type Theory book defines a higher-inductive notion of reals, and suggests that the interval may satisfy this universal property. We show that this is indeed the case in the category of sets of any universe. We also show that the type of HoTT reals is the least Cauch...
متن کاملEfficient Computation with Dedekind Reals
Cauchy’s construction of reals as sequences of rational approximations is the theoretical basis for a number of implementations of exact real numbers, while Dedekind’s construction of reals as cuts has inspired fewer useful computational ideas. Nevertheless, we can see the computational content of Dedekind reals by constructing them within Abstract Stone Duality (ASD), a computationally meaning...
متن کاملThe Dedekind Reals in Abstract Stone Duality
Abstract Stone Duality (ASD) is a direct axiomatisation of general topology, in contrast to the traditional and all other contemporary approaches, which rely on a prior notion of discrete set, type or object of a topos. ASD reconciles mathematical and computational viewpoints, providing an inherently computable calculus that does not sacrifice key properties of real analysis such as compactness...
متن کاملConcept lattices and order in fuzzy logic
The theory of concept lattices (i.e. hierarchical structures of concepts in the sense of Port-Royal school) is approached from the point of view of fuzzy logic. The notions of partial order, lattice order, and formal concept are generalized for fuzzy setting. Presented is a theorem characterizing the hierarchical structure of formal fuzzy concepts arising in a given formal fuzzy context. Also, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005